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Introduction

• Survey response rates have plummeted over the last thirty years,
with dire consequences for policymaking, research, and polling.

• Extensive work has been done on re-weighting and imputation
methods to adjust for non-response ex-post

• Less attention has been paid to the design and allocation of survey
incentives ex-ante to increase response rates

• This paper: choosing incentive-levels in surveys as an online
learning problem

• focus on one specific source of heterogeneity in non-response rates
across groups - differences in monetary willingness-to-accept (WTA)
values - which can be learned using modern adaptive
experimentation methods

• proposes budget-constrained multi-armed bandits to learn and use
these WTA values to increase response rates subject to
budget-constraints and representativeness considerations.
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Setup

• binary rewards r ∈ {0, 1}, and a ∈ A := [K] ‘arms’ (treatment
arms) with an unknown probability of success µ1, . . . , µk ∈ [0, 1]

• Pulling the ath arm produces reward ra sampled from Bernoulli
distribution Pa with mean µa. The agent’s task is to maximise total
reward E

[∑T
t=1 rat

]
.

• If we knew µ1, . . . , µK , the optimal action would simply be to
always play the arm with the highest reward a∗ = arg max[K] µk.

• However, we don’t, and therefore we need to incorporate learning µs
into the problem. This is the exploration versus exploitation tradeoff.

• Reward maximisation is equivalent to minimising regret
E [Regret] = E

[∑T
t=1 ra∗,t − rat

]
• lower bounds on the regret for any ‘consistent’ algorithm is

logarithmic in the number of pulls t (Lai and Robbins 1985)

• empirical meanQa := Sum of rewards received from arm a
Number of times arm a was pulled is unbiased for

µa, so we update it every time arm a is pulled
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Thompson Sampling

Posterior︷ ︸︸ ︷
π (µa | D) ∝ π (µa)π (D | µa) ∝ µ1−1

a (1 − µa)1−1︸ ︷︷ ︸
Prior

Likelihood︷ ︸︸ ︷
µsa

a (1 − µa)fa

∝ µ1−1+sa
a (1 − µa)1−1+fa ∝ µsa

a (1 − µa)fa

Parameter: S,F = 0 Success and failure counters for each arm)
for t = 1, …, T do

for a = 1, …, K do
Draw µa ∼ Beta (Sa + 1, Fa + 1) ; // Draw from mean

posterior

end for
a = arg max[K] µa ; // Pull arm with highest draw for µa

r = BernoulliReward(µa) ; // Draw reward r ∈ {0, 1}

Sa = Sa + r ; // Update Successes

Fa = Fa + (1 − r) ; // Update Failures

end for
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Adding arm-specific costs and budget constraints

• Vanilla bandits: agent’s goal is to maximise the expected
cumulative reward from the sequence of pulls at T (→∞).

• MABs may face budget constraints in real-world applications
• Pulling each arms may be associated with a fixed (Tran-Thanh et al.

2012) (henceforth TCRJ) or random (Ding et al. 2013) cost

• In surveys, an ‘arm’ is a monetary reward for survey completion, we
necessarily have fixed costs to pulling each arm, and a finite budget.

• Can offer payment conditional on completion (pay ca only if reward
is 1)

• under the reasonable assumption that larger payments are more
likely to induce responses, we may have µ1 ≤ . . . µK where
{1, . . . ,K} are ordered by the monetary value of the arm WLOG.

• A conventional MABmight give us a trivial answer: pay everyone the
most (i.e.~pull armK with the maximum value).

6



Knapsack-based UCB

• budget-limited MAB consisting of a machine withK arms, and a
total budget ofB. By pulling arm a, the agent has to pay ca, and
gets reward ra.

• Budget constrained UCB (Fractional KUBE): Pull the arm that
maximises the UCB/cost ratio

A = arg max
[K]

UCB︷ ︸︸ ︷
Qa +

√
2 log t
na

ca︸︷︷︸
cost

(1)
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Budgeted Thompson sampling

• Draw from posterior reward probability, but max reward/cost ratio
Pull

arg max
[K]

µa/

(
ca,t/

∑
a

ca

)

Parameter: S,F = 0 Success and failure counters for each arm
Param: C Vector of costs for each arm
whileBt > min[K] ca: (pulling is feasible) do

for a = 1, …, K do
Draw µ̂a ∼ Beta (Sa + 1, Fa + 1) ; // Draw from posterior

end for
c̃at = cat/

∑
K ckt ; // Compute Normalised cost at time t

A = arg max[K] µ̂a/c̃at ; // Identify arm with reward/cost

ratio

r = BernoulliReward(A) ; // Pull arm; draw reward r ∈ {0, 1}

SA = SA + r ; // Update Successes

FA = FA + (1 − r) ; // Update Failures

Bt+1 = Bt − cA ; // Deduct cost of arm from budget

end while
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Representativeness through cost-adjustment

• Inducing representativeness by adjusting costs ca,t

• initially prioritise exploration (keep c low)
• later balance / representativeness ca ∝ (xn − x̃)

• vary ca dynamically to target balance (in experiments) or
representativeness (in surveys)

cg
at =

1 +
(
B − b

B

)
︸ ︷︷ ︸

Remaining budget share

ψg


γ

cg
a

where ψg := (xt − x̃) is current over-representation of group g in sample

• Alternative: incorporate representativeness directly into objective
function and solve dynamic program 9



Setup

• Costs are drawn from a discrete uniform ca ∼ {2, 5, 10, 20}. 10
arms.

• The corresponding mean rewards are simulated
µa ∼ Beta (α = max(ca/5, 1), β = 10/ca)

• This ensures that the reward probability, E [µa] = α
α+β , is

increasing in ca, which is based on our substantive assumption that
higher payments are more likely to elicit responses

• For ca = 2,E [µa] = 1
5 , while for ca = 20,E [µa] = 4

4.5 = 8
9 .
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Arm-pulls with budget constraints (cost conditional on reward)
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Cumulative Payoffs with budget constraints (cost conditional on reward)
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Altering costs to improve representativeness

• Two groups: E,F , with µE
a generated as before, and

µF
a = (0.4, 0.5, 0.6, 0.7, 0.8) · µE

a

• Target in survey: 50%, 50% groups E and F
• Costs for groupE increase over time
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Sample shares of groups in simulations
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Conclusion

• Data collection using different strategies can be framed as a bandit
problem

• However, conventional bandits abstract from arm-specific costs
• severely limits their applicability in many social-scientific settings

• I propose cost-normalised UCB and Thompson, which work well in
such settings

• can be calibrated to prioritise representativeness later in data
collection

Future work

• formal results for dynamic-cost adjustment setup
• formalism as a dynamic programming problem with

information-theoretic objective function
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Thanks!
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